# Proficiency testing as tool in estimating national public health infrastructure

Robert Rej & Carol S. Norton-Wenzel
Wadsworth Center for Laboratories and Research
New York State Department of Health
School of Public Health - State University of New York at Albany
Albany, NY 12201-0509 USA

bob@wadsworth.org r.rej@albany.edu



Atlanta, 24 May 2004



#### Aum Shinrikyo (オウム真理教) Cult Attacks in Japan



#### Nerve agents (I)

- Include Sarin, Soman, Tabun
- Affect transmission of nerve impulses by inhibiting cholinesterase.
- All highly toxic organophosphate compounds that irreversibly bind to cholinesterase, resulting in accumulation of acetylcholine at the nerve synapses and neuromuscular junctions.

#### Nerve agents (II)

- Decreased activity of cholinesterase in blood can be an indicator of exposure to organophosphate inhibitors in cases of chemical terrorism – a sensitive and specific biomarker.
- In the event of such a chemical terrorism act, multiple cholinesterase measurements on serum samples from all potentially exposed subjects will likely be required (also for monitoring recovery).

#### ATSDR Recommendations



- "Symptomatic and asymptomatic patients suspected of significant exposure should have determinations of red blood cell (RBC) cholinesterase activity, the most useful test for nerve agent poisoning."
- "If this test is not available, plasma cholinesterase can be measured."
- "Patients should be advised to avoid organophosphate insecticide exposure until sequential RBC cholinesterase activity (measured at weekly to monthly intervals) has stabilized in the normal range, a process that may take 3 to 4 months after severe poisoning."

### Kasumigaseki Station Sarin Attack: Numbers

Over 6,000 injured Cholinesterase measurements in injured individuals alone: 6,000 persons Initial test = 6,000Twice monthly/four mont =48,000 Total = 54,000 measurements

### Estimating Laboratory Infrastructure: Four Approaches

- 1. Questionnaires of target population
- 2. CLIA'88 registry from HHS (CMS [fka HCFA])
- 3. Existing databases from CDC, APHL, etc,
- 4. Proficiency testing surveys

### Estimating Laboratory Infrastructure: 1. Surveys of Target Population

- Require considerable effort to mount
- Response rate often poor
- Appropriate personnel responding?
- Information is stale in two years, requiring yet another survey!

#### Estimating Laboratory Infrastructure: 2. CLIA Registry from HHS (CMS)

- Large existing database
- All medical laboratories
- Relatively current
- No information on scope of testing and methods used

#### Estimating Laboratory Infrastructure: 3. Databases from CDC, APHL, etc,

- Existing databases would not require new surveys
- Focus on public health laboratories
- Data likely not up-to-the minute
- General rather than specific information

### Estimating Laboratory Infrastructure: 4. Proficiency Testing Surveys

- Required by CLIA'88
- All laboratories must participate in available testing for tests offered
- Conducted three times per year
- Laboratorians respond to the survey
- Information on methodology
- Quality of testing also assessed

#### Laboratories in NY Program\*

Within NY State: 800
Outside NY State: 200
Total: 1000

Permit in Clin Chem: 550

### All Laboratories in NY Program N≈1000



### Cholinesterase Proficiency Testing

- Cholinesterase is not a regulated analyte under CLIA'88 and no regular proficiency testing is offered under CLIA.
- In the NYS program, cholinesterase was included in the June 2003 proficiency test event as an educational challenge.
- Equine serum cholinesterase added to chemistry proficiency testing samples.

#### Laboratories Performing Cholinesterase Measurements



# Lower Reference Limit Reported (U/L @ 37C)

| 1800 Acety | ylcholine | 5400 | Butyr | ylcholine |
|------------|-----------|------|-------|-----------|
|------------|-----------|------|-------|-----------|

1900\* 5600

1900 5600

1900 5900\*

2100\* 5900\*

2500 7000\*

2900 8000\*

3100

3167 4000 Propionylcholine

3167

3200\*

3200

\* Reported in U/mL (e.g. 1900 U/L = 1.9 U/mL)

## Cholinesterase Results for Two Serum Samples

|                       | Sample A<br>(U/L)         | Sample B<br>(U/L)       |
|-----------------------|---------------------------|-------------------------|
| Acetylcholine (n=13)  | 2537 ± 346<br>(CV= 14%)   | 451 ± 104<br>(CV= 23%)  |
| Butyrylcholine (n= 8) | $6167 \pm 1576$ (CV= 26%) | 1492 ± 551<br>(CV= 37%) |
| Propionylcholine      | 3528                      | 977                     |

#### Cholinesterase Results

- A total of 21 laboratories performed cholinesterase measurements; one laboratory reported results by two different methods.
- Cholinesterase testing is performed by only 1%\*
   of all of the laboratories in the NYS program: 14
   outside NYS; 7 within NYS; and 2 outside the US.
- 13 laboratories used acetylcholine as a substrate and CV near the threshold activity (normal/toxic) was 13%
- 8 laboratories used butyrylcholine as a substrate and CV was 26%.

<sup>\*</sup> Two participants in this survey were not NYS certified laboratories; 19/973= 1.03%

#### Summary & Conclusions

- A relatively small number of laboratories nationwide offer testing services for cholinesterase.
- Agreement on lower normal threshold is poor.
- Interlaboratory agreement among the laboratories using the acetylcholine procedure is reasonably good.
- Proficiency testing is a convenient and useful manner to asses and evaluate laboratory infrastructure with a high degree of data quality.
- CDC National Laboratory Database expansion.





